If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+34x=64
We move all terms to the left:
24x^2+34x-(64)=0
a = 24; b = 34; c = -64;
Δ = b2-4ac
Δ = 342-4·24·(-64)
Δ = 7300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7300}=\sqrt{100*73}=\sqrt{100}*\sqrt{73}=10\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-10\sqrt{73}}{2*24}=\frac{-34-10\sqrt{73}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+10\sqrt{73}}{2*24}=\frac{-34+10\sqrt{73}}{48} $
| 24x^2+34x=-64 | | 24xˇ2+34x=-64 | | 0,3/72=x | | 3/10/72=x | | x/(100+x)=0.05 | | x=5-0.05x | | 5(x+9)=10# | | 4x3-25x=0 | | -11-15x=22 | | x+x=x+70 | | 3q^2-10q+100=0 | | .8x=7678 | | 3x/×+16=5/3 | | 3x/3-16=5/3 | | x/4+x/10-2/5=x/20 | | .8x=6391 | | p^2-40-7=0 | | 0.5x+1=x-2 | | .8x=7600 | | 5666=3x | | 3e=333 | | 3e=566 | | 0=9x^2–36x+40 | | 200-3x=110 | | N2+n=1000 | | 673.07x=20.68 | | 673x=28 | | 673.07x=28 | | 6(3x−1)=30 | | .8x=7900 | | .2x=7900 | | 3x-3 =-7x +67 |